TRANSGENERATIONAL EFFECT OF DROUGHT STRESS AND SUB-LETHAL DOSES OF QUIZALOFOP-P-ETHYL: DECREASING SENSITIVITY TO HERBICIDE AND BIOCHEMICAL ADJUSTMENT IN *ERAGROSTIS PLANA*

<u>Marcus Vinícius Fipke</u>¹; Vivian Ebeling Viana¹; Tamara Heck¹; Natália Silva Garcia¹; Franck Emmanuel Dayan²; Edinalvo Rabaioli Camargo¹; Luis Antonio de Avila¹

¹Universidade Federal de Pelotas, Pelotas, RS, Brazil. marfipke@gmail.com; ²Colorado State University, Fort Collins, CO, USA

Destaque: Transgenerational adaptation to abiotic stress in Eragrostis plana, reduces sensitivity to quizalofop.

Resumo: Eragrostis plana Ness is an invasive C₄ perennial grass in South America and very adaptable to environmental stresses. Our hypothesis is that there is a transgenerational cross-talk between environmental stresses and weed response to herbicide. This study aimed to: (1) evaluate if E. plana primed by drought stress (DRY), a sub-lethal dose of guizalofop-p-ethyl (QPE), or a combination of both drought and herbicide stresses (DRY × QPE), produce a progeny with decreased sensitivity to quizalofop and (2) investigate the potential mechanisms involved in this adaptation. A population of *E. plana* was submitted to treatments DRY, QPE or DRY × QPE for two generations (G). The progenies were analyzed for sensitivity to the herbicide quizalofop and biochemical, herbicide residue and transcriptomics analyses were performed. The resistance index to G₂ population, DRY (less sensitive) was >12.3-fold (50% injury or ED₅₀) and >8.5-fold (50% shoot dry mass reduction or GR₅₀), in comparison to CHK (more sensitive). In the G₂, the quizalofop-treated CHK population had reduced stomatal conductance and increased hydrogen peroxide concentration and lipid peroxidation. However, there was no change in stomatal conductance, hydrogen peroxide level, and lipid peroxidation in the quizalofop-treated DRY population. In addition, G₂ population had increased activity of the antioxidant enzymes superoxide dismutase, catalase and ascorbate peroxidase, in conjunction with the upregulation of cytochrome P450 monooxygenases 72A31 (CYP72A31) and CYP81A12 expression, which was accompanied by reduced quizalofop-p-ethyl concentrations inside the plants. These results suggest that quizalofop is metabolized by DRY population, mainly via the cytochrome P450 enzyme. E. plana demonstrated a capacity for transgenerational adaptation to abiotic stresses, with the population previously exposed to DRY becoming less sensitive to quizalofop-p-ethyl treatment.

Palavras-chave: South African lovegrass; acclimatization; CYP450; antioxidant enzymes

Agradecimentos: Universidade Federal de Pelotas

Instituição financiadora: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – CAPES; Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq, Fundação de Amparo à Pesquisa do Rio Grande do Sul – FAPERGS