Levantamento fitossociológico de plantas daninhas em cultivo de abacaxi

BARBOSA, E. A. (UFVJM, Diamantina/MG – agroedi1000@yahoo.com.br), FRANÇA, A.C (UFVJM, Diamantina/MG - cabralfranca@yahoo.com.br), OLIVEIRA, A. M. (ICA - UFMG, Montes Claros/MG – arianem.oliver@yahoo.com.br), AQUINO, C.F (Doutorando, UFV-cesarfernandesaquino@yahoo.com.br), ALECRIM, A.O. (UFVJM, Diamantina/MG – ademilsonfederal@hotmail.com), ALBUQUERQUE, M.T.G (UFVJM, Diamantina/MG – marcotgomes@hotmail.com), MATOS, CC. (UFVJM, Diamantina/MG – chrisconmatos@yahoo.com.br).

RESUMO: O abacaxizeiro é uma cultura muito importante no cenário internacional, sendo cultivada em muitos países. Uma das principais tarefas no manejo desta frutífera é o controle de plantas daninhas. Portanto, é importante conhecer a população de plantas daninhas para melhor controlá-las, para isso foram feitas duas avaliações fitossociológicas (aos 30 e 100 dias após o plantio) em cultivo de abacaxi. No primeiro levantamento foram identificadas 17 espécies de plantas daninhas, e no segundo 12, distribuídas em 12 e 8 famílias respectivamente. As principais espécies encontradas nos dois levantamentos foram: *Bidens pilosa, Cyperusrotundus* e *Digitaria horizontalis*. Ocorrendo redução de plantas daninhas com o desenvolvimento do abacaxizeiro.

Palavras-chave: abacaxi, planta daninha, fitossociologia.

INTRODUÇÃO

O plantio de abacaxizeiro (*Ananas comosus*) ocorre em mais de 70 países de clima tropical e subtropical (Santos et al., 2009). Esta frutífera é amplamente cultivada no Brasil, onde representa grande importância econômica e social em virtude da sua excelente fonte de renda através da comercialização do fruto e do processamento industrial do mesmo. Além disso, absorve mão de obra no meio rural, contribuindo para a geração de emprego e renda (Teixeira et al., 2001).

O abacaxizeiro é a principal fonte de bromelina (conjunto de enzimas proteolíticas encontradas nos vegetais da família Bromeliaceae), enzima importante na produção de fármacos, e nas indústrias alimentícia e têxtil (Draetta, Giacomelli, 2003; Santos et al., 2009). O fruto do abacaxizeiro possui em sua composição teores apreciáveis de vitaminas,

açúcares, fibra alimentar, entre outros constituintes que podem ser utilizados na alimentação humana (Botelho, 2002).

Ananas comosus é uma espécie adaptada às condições semiáridas, apresentando metabolismo CAM (Metabolismo Ácido das Crassuláceas), que se caracteriza pelo fechamento estomático durante o dia, economizando água. A absorção de CO2 ocorre durante a noite, com posterior armazenamento na forma de ácido málico nos vacúolos (Kerbauy, 2004). Esta característica propicia o cultivo de abacaxi em várias regiões do Brasil, até mesmo em propriedades onde o nível tecnológico é baixo, esta espécie é cultivada em condições de sequeiro. No entanto, o cultivo de abacaxi apresenta alguns desafios, principalmente relacionado ao manejo de plantas daninhas.

A infestação de plantas daninhas nesta frutífera é agravada por se tratar de uma cultura de pequeno porte e apresentar desenvolvimento inicial muito lento favorecendo as condições competição das plantas daninhas (Catunda, Freitas, 2002; Catunda et al., 2005).

Para tomar as decisões de manejo de plantas daninhas é necessário o conhecimento das espécies invasoras, bem como a distribuição destas na área. Uma ferramenta para a obtenção destas informações é o levantamento fitossociológico de plantas daninhas. Desta forma objetivou se no presente trabalho identificar os principais parâmetros fitossociológicos de plantas daninhas em cultivo de abacaxi em condições de sequeiro.

MATERIAL E MÉTODOS

O trabalho foi conduzido no ano de 2010, na comunidade Abóbora, no município de Montes Claros, norte de Minas Gerais, localizado na longitude de 43°57'27.3" W, latitude de 16°55'04.7" e 965 m de altitude, sendo caracterizado de acordo com a classificação de Köppen como clima do tipo Aw, (Tropical de Savana). O solo utilizado apresentava textura média com pH de 6,6, sendo a concentração dos principais nutrientes de 27,09; 163 e 13 mg/ kg⁻¹para fósforo, potássio e cálcio respectivamente.

O preparo do solo foi realizado por meio de técnicas convencionais com aração e gradagem, não sendo feita correção de solo nem adubação. Foram utilizadas mudas do tipo filhote, da variedade pérola, obtidas no próprio município, não sendo feito nenhum tratamento nestas. O plantio ocorreu no mês de novembro, no iniciou do período chuvoso em sulcos. O espaçamento foi de 90 x 40 x 30 cm, totalizando 51.280 plantas/ha⁻¹.

Os tratos culturais e fitossanitários usados no período de condução do trabalho foram principalmente o controle de plantas daninhas, que se restringiu à utilização de capina manual.

Foram feitos dois levantamentos fitossociológicos de plantas daninhas utilizando o quadrado inventário de 0,25 m², sendo o primeiro aos 30 DAP (dias após o plantio) e o

último aos 100 DAP. Logo após cada um dos levantamentos, executou o controle das plantas daninhas através de capinas na área. As plantas daninhas presentes na área do quadrado foram devidamente identificas por meio de consultas a literatura (LORENZI, 2006), a especialistas e a herbários. Posteriormente a identificação, estas foram coletadas e secas em estufa de circulação forçada a 65 °C por 72 h para a determinação da matéria seca da parte aérea.

Com os resultados dos levantamentos das comunidades infestantes, calculou se os parâmetros fitossociologicos propostos por (Mueller-Dombois, Ellemberg 1974).

RESULTADOS E DISCUSSÃO

Foram identificadas aos 30 DAP, 17 espécies de plantas daninhas distribuídas em 10 famílias (Tabela 1).

Tabela 1. Valores de densidade relativa, frequência relativa, dominância relativa e abundância relativa de plantas daninhas em cultivo de abacaxizeiro aos 30 DAP.

Nome científico	Família	Der	Frr	Dor	Abr
Bidens pilosa	Asteraceae	47	11	2	10
Cyperus rotundus	Cyperaceae	36	37	10	27
Digitaria horizontalis	Poaceae	28	24	24	25
Euphorbia heterophylla	Euphorbiaceae	17	16	2	3
Aeschnomene	Leguminosae	16	20	15	17
denticulata					
Sida rhombifolia	Malvaceae	7	2	6	5
Merremia cissoides	Convolvulaceae	5	10	13	11
Brachiaria plantaginea	Poaceae	5	4	4	3
Portulaca oleraceae	Portualacaceae	4	10	8	8
Digitaria horizontalis	Poaceae	2	3	0	1
Digitaria sanguinalis	Poaceae	2	2	1	1
Emilia sonchifolia	Asteraceae	2	2	2	1
Amaranthus viridis	Amaranthaceae	1	4	1	1
Merremia cissoides	Convolvulaceae	1	3	17	4
Senna obtusifolia	Fabaceae	1	12	6	2
Sorghum	Poaceae	1	1	1	1
arundinaceum					
Digitaria ciliares	Poaceae	1	3	1	1

Aos 100 DAP encontrou-se 12 espécies, distribuídas em 8 famílias (Tabela 2).

Tabela 2. Valores de densidade relativa, frequência relativa, dominância relativa e abundância relativa de plantas daninhas em cultivo de abacaxizeiro aos 100 DAP.

Nome científico	Família	Der	Frr	Dor	Abr
Bidens pilosa	Asteraceae	42	10	5	9
Cyperus rotundus	Cyperaceae	39	36	15	16
Digitaria horizontalis	Poaceae	25	23	21	23
Euphorbia heterophylla	Euphorbiaceae	20	17	4	7
Sida rhombifolia	Malvaceae	7	6	6	4
Merremia cissoides	Convolvulaceae	6	10	18	7
Brachiaria plantaginea	Poaceae	5	4	6	5
Digitaria sanguinalis	Poaceae	5	6	2	2
Digitaria ciliares	Poaceae	4	7	3	3
Portulaca oleraceae	Portualacaceae	2	5	3	3
Digitaria horizontalis	Poaceae	2	4	1	2
Senna obtusifolia	Fabaceae	3	14	6	3

As principais espécies encontradas nos dois levantamentos foram: *Bidens pilosa*, *Cyperus rotundus* e *Digitaria horizontalis*. Houve reduções do primeiro para o segundo levantamento nos valores de densidade, frequência e abundancia o mesmo não ocorreu para a dominância, pois no segundo levantamento as plantas estavam maiores com maior massa seca. Consequentemente essas espécies apresentaram também maior índice de valor de importância (IVI) e índice de valor de cobertura (IVC).

Procópio et al., (2004) verificaram que *B. pilosa* apresenta elevada eficiência na utilização do nitrogênio absorvido, convertendo-o em biomassa. Proporcionando vantagem competitiva com as plantas cultivadas, principalmente no caso do abacaxi que apresenta desenvolvimento inicial muito lento.

De acordo com Cunha et al.,(1999) densidades de 40 plantas m² *C. rotundus* e *D. horizontalis* reduzem significativamente os teores de nitrogênio, fósforo, potássio e cálcio na folha D (folha mais jovem entre as folhas adultas e a mais ativa fisiologicamente) do abacaxizeiro.

CONCLUSÕES

Foram identificadas aos 30 DAP 17 espécies de plantas daninhas, distribuídas em 10 famílias. Aos 100 DAP encontrou 12 espécies, distribuídas em 8 famílias. As principais espécies encontradas nos dois levantamentos foram: *Bidens pilosa, Cyperusrotundus* e

Digitaria horizontalis. Ocorrendo redução de plantas daninhas com o desenvolvimento do abacaxizeiro.

REFERÊNCIAS BIBLIOGRÁFICAS

BOTELHO,L; CONCEIÇÃO,A; CARVALHO, V.D.Caracterização de fibras alimentares da casca e cilindro central do abacaxi 'smoothcayenne. **Ciênc. agrotec**, v.26, n.2, p.362-367, 2002.

CATUNDA, M. G.; FREITAS, S. P. Efeitos da competição de plantas daninhas na cultura do abacaxizeiro (*Ananascomossus*L.). In: CONGRESSO BRASILEIRO DE CIÊNCIA DAS PLANTAS DANINHAS, 23.,2002, Gramado. **Resumos...** Gramado: SBCPD, 2002. p. 533.

CATUNDA, M.G; FREITAS, S.P; OLIVEIRA, J.G; SILVA, C.M.M. Efeitos de herbicidas na atividade fotossintética e no crescimento de abacaxi (*ananascomossus*). **Planta Daninha**, v. 23, n. 1, p. 115-121, 2005.

CUNHA, G. A. P.; CABRAL, J. R. S.; SOUZA, L. F. S. O **abacaxizeiro**: cultivo, agroindústria e economia. Brasília: EMBRAPA, 1999. 480 p.

DRAETTA, I. S; GIACOMELLI, E.J. Ocorrência da bromelina e cultivares de abacaxizeiro. Colet.ITAL, v.23, n.1, p.44-55,1993.

KERBAUY, G. B. Fisiologia vegetal. Rio de Janeiro: Guanabara Koogan, 2004. p.452.

MUELLER-DUMBOIS, D.; ELLENBERG, H. Aims andmethods vegetation ecology. New York: John Wiley &Sons, 1974.

PROCÓPIO, S. O. et al. Absorção e utilização do nitrogênio pelas culturas da soja e do feijão e por plantas daninhas.**Planta Daninha**, v. 22, n. 3, p. 365-374, 2004.

SANTOS, A. F; R. S. ALVES; N. S. LEITE; R, P, M. FERNANDES. Estudos bioquímicos da enzima bromelina do *Ananascomosus*(abacaxi). **Sientia Plena**, v.5, n.11, p 111101, 2009.

TEIXEIRA, J.B; CRUZ, A. R. R; FERREIRA, F.R; CABRAL, J. R. S. Produção de mudas de abacaxi de alta qualidade através da micropropagação. Embrapa, 2001.26p.