INTERFERÊNCIA DE *Brachiaria plantaginea* SOBRE A ATIVIDADE FOTOSSINTÉTICA DE PLANTAS DE PINHÃO-MANSO

LEAL, J. F. L. (UFFRJ, Seropédica/RJ – jessica-agroleal@hotmail.com), OLIVEIRA, A. L. (UFRRJ, Seropédica/RJ – andreluizagronomo@hotmail.com), SILVA, L. C. A. (UFRRJ, Seropédica/RJ – lua.alves@live.com), VICENTE, M. C. (UFRRJ, Seropédica/RJ – michelecagnin@gmail.com), MACHADO, A. F. L. (UFRRJ, Seropédica/RJ – amachado@ufrrj.br), SOUSA, C. P. (UFRRJ, Seropédica/RJ – camilafepi@ufrrj.br).

RESUMO: O objetivo deste trabalho foi avaliar a interferência de *Brachiaria plantaginea* na atividade fotossintética de plantas de pinhão-manso. O experimento foi conduzido em casa de vegetação, pertencente à Universidade Federal Rural do Rio de Janeiro, Seropédica/RJ. O delineamento experimental foi de blocos casualizados com quatro repetições. Foram avaliadas duas densidades de *Brachiaria plantaginea* (2 plantas por vaso – D2 e 5 plantas por vaso – D5). O período de convivência da *Brachiaria plantaginea* iniciou no momento do transplante das mudas de pinhão-manso. Foram avaliados os parâmetros da fluorescência da clorofila *a* nas plantas de pinhão-manso aos 30 e 60 dias após o início do período de convivência, utilizando-se um fluorômetro portátil (HandyPEA). As plantas de pinhão-manso sob competição com *Brachiaria plantaginea*, sofrem um prejuízo inicial em seu metabolismo, principalmente em densidades elevadas da planta daninha, porém apresentam capacidade de se recuperar destas injúrias elevando sua atividade fotossintética.

Palavras-chave: Fluorescência da clorofila a, Teste JIP, Papuã, competição.

INTRODUÇÃO

Na era da sustentabilidade, onde há uma maior preocupação com o meio ambiente e com a substituição das energias não renováveis, muitos estudos estão voltados as energias renováveis e há um grande enfoque ao uso dos biocombustíveis, em especial, o uso do pinhão- manso (*Jatropha curcas* L.). O pinhão-manso é uma das plantas mais visadas como biodiesel, em função de sua capacidade adaptativa e seu alto teor e qualidade de óleo contido em suas sementes (SACHS, 2010), além do que o mesmo se adapta a condições edafoclimáticas variáveis. No entanto a produtividade do pinhão-manso varia significativamente mediante a presença competitiva das plantas daninhas.

As plantas daninhas competem com o pinhão-manso por recursos essenciais, tais como, água, luz e nutriente, a mesma também pode ser hospedeira para pragas e doenças favorecendo assim a disseminação das doenças para o pinhão-manso. A competição depende da comunidade infestante, do ciclo em que a planta de interesse se encontra e do

período de convivência (FEY RUBENS et al., 2012). Dentre as espécies daninhas que infestam a cultura do milho, destaca-se a *Brachiaria plantaginea* (papuã ou capim-marmelada), como uma das gramíneas de maior ocorrência nas regiões Sul e Sudeste do Brasil (KISSMANN & GROTH, 1997). Esta é uma espécie muito competitiva, podendo levar a prejuízos consideráveis na produtividade das culturas, apresentando crescimento rápido e explorando eficientemente os recursos do meio, como água, luz e nutrientes.

Estresses bióticos e abióticos, entre eles a competição, podem alterar a capacidade fotossintética das plantas. Para avaliação dos mecanismos da fotossíntese frente estas variáveis vêm sendo utilizada a análise da fluorescência da clorofila *a*. A vantagem desse método é que é uma analise não destrutiva e pode ser determinada no campo ou laboratório (SOUSA et al., 2014).

Diante do exposto, o objetivo deste trabalho foi avaliar a interferência de *Brachiaria* plantaginea na atividade fotossintética de plantas de pinhão-manso.

MATERIAL E MÉTODOS

O experimento foi conduzido em casa de vegetação, pertencente a Universidade Federal Rural do Rio de Janeiro, Seropédica/RJ. O delineamento experimental foi de blocos casualizados com quatro repetições, sendo cada planta considerada como uma unidade experimental. Foram utilizadas plantas jovens de pinhão-manso, cultivadas em recipientes plásticos de 10 L, contendo solo adubado previamente, de acordo com as necessidades da cultura. As plantas foram irrigadas com o objetivo de manter o solo com umidade próxima à capacidade de campo durante todo experimento. Foram avaliadas duas densidades de *Brachiaria plantaginea* (2 plantas por vaso – D2 e 5 plantas por vaso – D5). O período de convivência da *Brachiaria plantaginea* iniciou no momento do transplante das mudas de pinhão-manso.

Os parâmetros da cinética de emissão da fluorescência transiente da clorofila a das plantas foram avaliados aos 30 e 60 dias após o início do período de convivência. O monitoramento da emissão da fluorescência da clorofila a foi realizado utilizando um fluorômetro portátil (HandyPEA, Hansatech, King's Lynn, Norkfolk, UK). As medições foram realizadas no terço médio das folhas jovens completamente expandidas, no período da manhã, e realizadas 20 minutos após a adaptação das folhas ao escuro. A emissão de fluorescência foi induzida em uma área de 4 mm de diâmetro da folha pela exposição da amostra a um pulso de luz saturante numa intensidade de 3.000 µmol m-2 s-1. A partir das intensidades de fluorescência foram calculados os parâmetros estabelecidos pelo Teste JIP (STRASSER & STRASSER, 1995).

RESULTADOS E DISCUSSÃO

A presença de *Brachiaria plantaginea* interferiu negativamente no aparato fotossintético das plantas de pinhão-manso, nas duas densidades avaliadas, aos 30 dias após o início da convivência (Figuras 1). Injúrias mais severas foram observadas para a densidade 5, onde foi verificada redução de aproximadamente 60% nos índices de desempenho fotossintético (PI_{TOTAL} e PI_{ABS}) e consequente aumento de 60% na dissipação de energia na forma de calor (DI₀/RC). Aumento na dissipação da energia absorvida na forma de calor demonstra a incapacidade da planta em utilizar esta energia no processo fotossintética, o que acarreta em prejuízo no seu crescimento e produtividade, pois sabe-se que mesmo que a uma cultura seja considerada competitiva, esta pode ser severamente afetada pela interferência de plantas daninhas, reduzindo o crescimento e a produtividade (CONSTANTIN et al., 2007). As expressões para obtenção de PI_{ABS} e PI_{TOTAL} são multiparamétricas, ou seja, combinam várias respostas parciais do aparato fotossintético, fornecendo informações valiosas sobre o seu funcionamento (YUSUF et al., 2010).

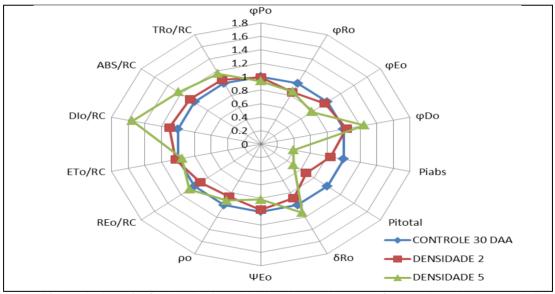


Figura 1. Efeito da interferência de *Brachiaria plantaginea*, após 30 dias de competição, sob os parâmetros da fluorescência da clorofila *a* das plantas de pinhão-manso, obtidos através do teste JIP, (centro radarplot = 0,0, máximo = 2,5) em relação ao padrão de comportamento - controle (linha cheia = 1,0). UFRRJ, Seropédica/RJ, 2013.

Nas análises realizadas após 60 dias do inicio da convivência, foi observado comportamento semelhante à primeira avaliação para a densidade 2 de *Brachiaria plantaginea* (Figura 2), o que demonstra que mesmo com o aumento do período de convivência, esta densidade não é capaz de interferir de maneira severa na fotossíntese das plantas de pinhão-manso. Entretanto para a densidade 5 o comportamento fotossintético observado foi bastante distinto nas duas avaliações. Na segunda avaliação foi observado

incremento superior a 60% em PI_{TOTAL} e PI_{ABS} , elevação de 40% em po e ϕ Ro (parâmetros relacionados ao transporte de elétrons a partir de Q_A^- até o aceptor final do fotossistema I) e queda de aproximadamente 30% em DI_0/RC . Estas alterações sugerem que as plantas de pinhão-manso possuem a capacidade de acelerar sua atividade fotossintética com o objetivo de superar a presença da planta daninha.

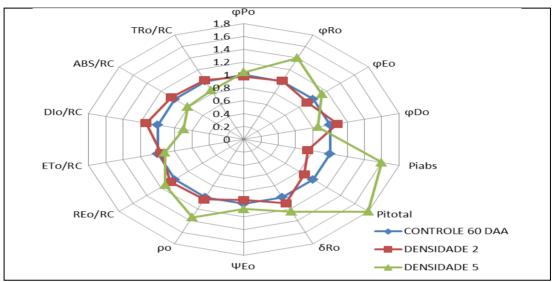


Figura 2. Efeito da interferência de *Brachiaria plantaginea*, após 60 dias de competição, sob os parâmetros da fluorescência da clorofila *a* das plantas de pinhão-manso, obtidos através do teste JIP, (centro radarplot = 0,0, máximo = 2,5) em relação ao padrão de comportamento - controle (linha cheia = 1,0). UFRRJ, Seropédica/RJ, 2013.

CONCLUSÕES

As plantas de pinhão-manso sob competição com *Brachiaria plantaginea*, sofrem um prejuízo inicial em seu metabolismo, principalmente em densidades elevadas da planta daninha, porém apresentam capacidade de se recuperar destas injúrias elevando sua atividade fotossintética.

AGRADECIMENTO

Ao Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), à Coordenação de Aperfeiçoamento Pessoal de Nível Superior (CAPES), e à Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), pelo apoio financeiro e auxílio com bolsas.

REFERÊNCIAS BIBLIOGRÁFICAS

CONSTANTIN, J. et al. Interação entre sistemas de manejo e de controle de plantas daninhas em pós-emergência afetando o desenvolvimento e a produtividade do milho.

Planta Daninha, v. 25, n. 3, p. 513-520, 2007.

FEY, R. et al. Identificação e interferência de plantas daninhas em pinhão-manso. **Revista Brasileira de Engenharia Agrícola e Ambiental,** v.17, n.9, p.955-961, 2013.

KISSMANN, K. G.; GROTH, D. Plantas infestantes e nocivas. 2. ed. São Paulo: BASF, 1997. SACHS, G. et al. Commodity prices and volatility: Old answers to new questions, Global Economics Paper, n.194, p.1-17, 2010.

STRASSER, B. J.; STRASSER, R. J. Measuring fast fluorescence transients to address environmental question: The JIP test. In: MATHIS, P. (Ed.), **Photosynthesis**: **From Light to Biosphere**. Dordrecht: Kluwer Academic Publisher, vol. V, p. 977–980, 1995.

SOUSA, C. P. et al. Cholorophyll a fluorescence in rice plants exposed of herbicides of imidazolinone. **Plantas Daninhas**, v.32, n.1, p.141-150, 2014.

YUSUF, M.A.; KUMAR, D.; RAJWANSHI, R.; STRASSER, R.J.; TSIMILLI-MICHAEL, M.; GOVINDJEE; SARIN, N.B. Overexpression of γ-tocopherol methyl transferase gene in transgenic *Brassica juncea* plants alleviates abiotic stress: Physiological and chlorophyll a fluorescence measurements. **Biochimica et BiophysicaActa**, v. 1797, p. 1428-1438, 2010.