

# INFLUÊNCIA DO GLYPHOSATE ISOLADO OU EM MISTURA COM ATRAZINE SOBRE O DESENVOLVIMENTO INICIAL DO MILHO RR

OLIVEIRA NETO, A.M. (UEM, Maringá/PR – am.oliveiraneto@gmail.com), DAN, H.A. (UEM, Maringá/PR – halmeidadan@gmail.com), CONSTANTIN, J. (UEM, Maringá/PR – constantin@teracom.com.br), OLIVEIRA JÚNIOR, R.S. (UEM, Maringá/PR – rsojunior@uem.br), GUERRA, N. (UEM, Maringá/PR – naiara.guerra@hotmail.com), GEMELLI, A.(UEM, Maringá/PR – alexandregemelli@gmail.com), JUMES, T.M.C. (UEM, Maringá/PR – talitajumes@hotmail.com), TAKANO, H.K. (UEM, Maringá/PR – hudsontakano@gmail.com)

**RESUMO:** O objetivo do trabalho foi de avaliar o efeito do herbicida glyphosate isolado ou em mistura com o atrazine sobre o desenvolvimento inicial de plantas de milho cultivar 2B688 HR. O trabalho foi conduzido em casa de vegetação pertencente à Universidade Estadual de Maringá, o delineamento experimental utilizado foi o inteiramente casualizado, com quatro repetições. As unidades experimentais foram representadas por vasos com capacidade de 8 dm³ de solo, o cultivar utilizado foi o 2B688 HR. Os tratamentos avaliados consistiram da avaliação de seis doses do herbicida glyphosate (0, 480, 960, 1440, 1920 e 2400 g ha⁻¹), mais três tratamentos adicionais com glyphosate + atrazine (720 + 1500 g ha⁻¹), glyphosate + atrazine (1440 + 1500 g ha⁻¹) e atrazine (1500 g ha⁻¹), totalizando nove tratamentos com quatro repetições. Nas condições em que se realizou o experimento conclui-se que o herbicida glyphosate isolado ou em mistura com atrazine não afetou o desenvolvimento da parte aérea das plantas de milho cultivar 2B688 HR. Entretanto, os mesmos foram prejudiciais ao desenvolvimento das raízes.

Palavras-chave: Roundup Ready, seletividade, Zea mays.

## **INTRODUÇÃO**

As plantas daninhas interferem no desenvolvimento da cultura do milho com intensidade variável em função da época de ocorrência, da população e das espécies presentes. A ocorrência de uma elevada infestação no início do desenvolvimento da cultura pode proporcionar perdas acentuadas na produtividade se o controle e a época de aplicação não forem adequados (Galon et al., 2008). Estima-se que a redução de rendimento em função da competição com as

plantas daninhas sejam da ordem de 13%, porém, em muitas situações onde nenhuma medida de controle é adotada, essa redução pode chegar a 85% (Carvalho et al., 2007), o que torna o controle de plantas daninhas uma necessidade de ordem econômica (Lòpes-Ovejero et al., 2003).

O controle de plantas daninhas na cultura do milho é feita em sua maioria com o uso de herbicidas pós-emergente (Gower et al., 2003). Alguns fatores são responsáveis para que isto ocorra, dentre os quais destacam-se: a aplicação ser localizada, sua eficácia não ser afetada pelas características dos solos, possibilidade de uso em sistemas de plantio direto e convencional e a escolha dos produtos serem feita de acordo com as espécies de plantas daninhas existentes na área, no momento da aplicação (Fleck, 1992).

Neste sentido, com a introdução de cultivares de milho RR, o glyphosate passa a ser uma opção seletiva de herbicida pós-emergente a ser usado no controle de plantas daninhas na cultura do milho (Gower et al., 2003). Todavia, estudos básicos que visam avaliar a tolerância destes materiais genéticos no sistema produtivo do milho se fazem necessários.

O objetivo do trabalho foi de avaliar o efeito do herbicida glyphosate isolado ou em mistura com o atrazine sobre o desenvolvimento inicial de plantas de milho cultivar 2B688 HR.

### **MATERIAL E MÉTODOS**

O trabalho foi conduzido no período de novembro e dezembro do ano de 2011, em casa de vegetação pertencente à Universidade Estadual de Maringá – UEM, localizada no município de Maringá, nas coordenadas 23°24'12"S e 51°56'24"W e altitude de 560m.

Foram utilizadas amostras de solo deformadas retiradas de 0 a 20 cm de profundidade de um Latossolo vermelho distroférrico, de textura franco-arenosa, sendo constituído por 690 g kg<sup>-1</sup> de areia, 290 g kg<sup>-1</sup> de argila e 20 g kg<sup>-1</sup> de silte. Com relação às características químicas, apresentou pH (H<sub>2</sub>O) de 5,9; 3,68 cmol<sub>c</sub> dm<sup>-3</sup> de H<sup>+</sup>+Al<sup>3+</sup>; 3,17 cmol<sub>c</sub> dm<sup>-3</sup> de Ca<sup>+2</sup>; 0,67 cmol<sub>c</sub> dm<sup>-3</sup> de Mg<sup>+2</sup>; 0,61 cmol<sub>c</sub> dm<sup>-3</sup> de K<sup>+</sup>; 47,6 mg dm<sup>-3</sup> de P e 11,89 g dm<sup>-3</sup> de C.

O delineamento experimental utilizado foi o inteiramente casualizado, com quatro repetições. As unidades experimentais foram representadas por vasos de polietileno com capacidade de 8 dm³ de solo, onde foram semeadas quatro sementes de milho 2B688 HR por vaso. Após a emergência, foi realizado desbaste e mantidas apenas duas plantas por unidade experimental. Os tratamentos usados consistiram da avaliação de seis doses do herbicida glyphosate (0, 480, 960, 1440, 1920 e 2400 g ha⁻¹), mais três tratamentos adicionais glyphosate + atrazine (720 + 1500 g ha⁻¹), glyphosate + atrazine (1440 + 1500 g ha⁻¹) e atrazine (1500 g ha⁻¹), totalizando nove tratamentos.

A aplicação dos tratamentos herbicidas foi realizada no dia 07/12/2011, quando as plantas de milho encontravam-se no estádio de V3 à V4. Com um pulverizador costal XXVIII CBCPD, 3 a 6 de setembro de 2012, Campo Grande, MS / Área 5 - Manejo integrado de plantas daninhas em culturas alimentícia

pressurizado a CO<sub>2</sub>, munido de quatro pontas XR110.02, mantido à pressão de trabalho de 2 kgf cm<sup>-2</sup>, o que resultou em um volume de aplicação de 200 L ha<sup>-1</sup>. No momento da aplicação os dados climatológicos médios foram: temperatura do ar de 27° C, umidade relativa de 66,5%, velocidade do vento foi de 1,1 km h<sup>-1</sup>, sendo que o céu encontrava-se com poucas nuvens e solo o úmido.

Aos 14 dias após a aplicação dos tratamentos foram realizadas as seguintes avaliações: altura de plantas, sendo esta tomada com o auxílio de uma régua graduada em milímetros desde o colo da planta até a última lígula visível. O diâmetro dos colmos foi tomado em todas as plantas da parcela usando-se um paquímetro digital. Por fim, as plantas de milho foram separadas em parte aérea e raízes e foram encaminhadas para secagem em estufa de circulação de ar forçado a 65°C até atingir massa constante, para posteriormente se determinar a massa seca da parte aérea (MSPA) e massa seca das raízes (MSRA).

Os dados foram submetidas a análise de variância pelo teste F, sendo as doses de glyphosate submetidas a análise de regressão. Para comparação dos tratamentos adicionais procedeu-se a comparação através se contrastes, em todas as análises o nível de significância adotado foi de 5%. Os contrastes avaliados estão listados abaixo.

| C <sub>1</sub>        | Testemunha sem herbicida                        | VS | gly 480, gly 960, gly 1440, gly 1920, gly 2400,                                     |  |
|-----------------------|-------------------------------------------------|----|-------------------------------------------------------------------------------------|--|
|                       |                                                 |    | gly+atra <sub>720+1500</sub> , gly+atra <sub>1440+1500</sub> e atra <sub>1500</sub> |  |
| $C_2$                 | gly 480, gly 960, gly 1440, gly 1920 e gly 2400 | VS | gly+atra <sub>720+1500</sub> , gly+atra <sub>1440+1500</sub> e atra <sub>1500</sub> |  |
| C <sub>3</sub>        | Testemunha sem herbicida                        | VS | gly 480, gly 960, gly 1440, gly 1920 e gly 2400                                     |  |
| C <sub>4</sub>        | Testemunha sem herbicida                        | VS | gly+atra <sub>720+1500</sub> , gly+atra <sub>1440+1500</sub> e atra <sub>1500</sub> |  |
| <b>C</b> <sub>5</sub> | Testemunha sem herbicida                        | VS | gly+atra <sub>720+1500</sub>                                                        |  |
| C <sub>6</sub>        | Testemunha sem herbicida                        | VS | gly+atra <sub>1440+1500</sub>                                                       |  |
| C <sub>7</sub>        | Testemunha sem herbicida                        | VS | atra <sub>1500</sub>                                                                |  |

#### **RESULTADOS E DISCUSSÃO**

O herbicida glyphosate, dentro do intervalo de doses avaliadas, não afetou significativamente o acúmulo de massa seca na parte aérea, a altura de plantas e o diâmetro dos colmos, sendo que os valores médios de, respectivamente, 11,0 g, 23,2 cm e 17,8 mm explicaram sua distribuição (Figura 1).

O acúmulo de massa seca pelas raízes do milho foi prejudicialmente afetado pelo aumento na dose de glyphosate, de modo que o incremento de um grama do equivalente ácido promoveu a redução de 0,0069 gramas de massa seca nas raízes. A dose de 480 g ha<sup>-1</sup> de glyphosate já proporcionou uma redução na massa seca das raízes de 10,0%, enquanto que a

maior dose avaliada promoveu uma redução de mais de 50,0% nos valores de massa seca das raízes (Figura 1).

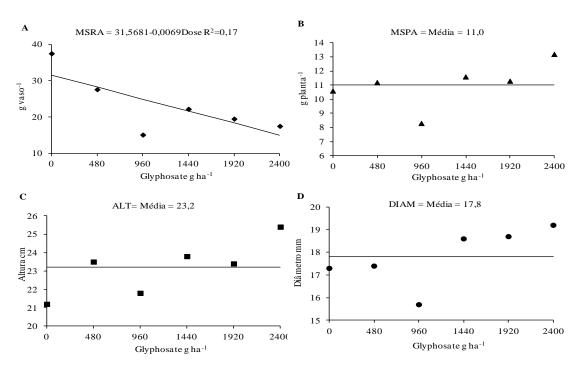
Os contrastes realizados confirmaram que o herbicida glyphosate realmente não prejudicou o desenvolvimento das plantas de milho, assim como os tratamentos adicionais com as misturas em tanque de glyphosate + atrazine e atrazine (Tabela 1).

Em contrapartida, para a variável massa seca das raízes observou-se que de maneira geral todos os tratamentos que continham o glyphosate isolado ou em mistura com atrazine afetaram o desenvolvimento das raízes. Já o herbicida atrazine isolado não prejudicou o desenvolvimento e o acúmulo de massa seca nas raízes (Tabela 1).

#### **CONCLUSÕES**

Nas condições em que se realizou o experimento conclui-se que o herbicida glyphosate isolado ou em mistura com atrazine não afetou o desenvolvimento da parte aérea das plantas de milho cultivar 2B688 HR. Entretanto, os mesmos foram prejudiciais ao desenvolvimento das raízes.

#### REFERÊNCIAS BIBLIOGRÁFICAS


CARVALHO, L. B. et al. Estudo comparativo do acúmulo de massa seca e macronutrientes por plantas de milho var. BR- 106 e *Brachiaria plantaginea*. **Planta Daninha**, v. 25, n. 2, p. 293-301, 2007.

FLECK, N.G. Princípios de controle de plantas daninhas. Porto Alegre: UFRGS, 1992, 70p.

GALON, L. et al. Períodos de interferência de *Brachiaria plantaginea* na cultura do milho na região sul do Rio Grande do Sul. **Planta Daninha,** v. 26, n. 4, p. 779-788, 2008.

GOWER, S.A. et al. Effects of postemergence glyphosate application timining on weed control and grain yield in glyphosate-resistant corn: results of a 2-yr multistate study, **Weed technology**, v.17, p.821-828, 2003.

LÓPEZ-OVEJERO, R. F. et al. Seletividade de herbicidas para a cultura do milho (*Zea mays*) aplicados em diferentes estádios fenológicos da cultura. **Planta Daninha,** v. 21, n. 3, p. 413-419, 2003.



**Figura 1.** Dose resposta de glyphosate em milho RR para a variável-resposta Massa seca das raízes (A), Massa seca da parte aérea (B), Altura de plantas (C) e diâmetro de colmos (D) aos 14 dias após a aplicação dos tratamentos. Maringá, PR, 2011/2012.

**Tabela 1.** Estimativa dos contrastes para a variável-resposta Massa seca das raízes, Massa seca da parte aérea, Altura de plantas e diâmetro de colmos aos 14 dias após a aplicação dos tratamentos. Maringá, PR, 2011/2012.

| Massa          | seca das Raízes    |       | Massa seca da Parte Aérea |                     |        |  |
|----------------|--------------------|-------|---------------------------|---------------------|--------|--|
| Contrantes     | Estimativa do      | Pr>Fc | Contrastes                | Estimativa do       | Pr>Fc  |  |
|                | contraste          |       |                           | contraste           |        |  |
| C <sub>1</sub> | 17,4 <sup>*</sup>  | 0,002 | C <sub>1</sub>            | -0,2 <sup>ns</sup>  | 0,859  |  |
| $C_2$          | 0,8 <sup>ns</sup>  | 0,832 | $C_2$                     | -0,5 <sup>ns</sup>  | 0,618  |  |
| $C_3$          | 17,1 <sup>*</sup>  | 0,003 | $C_3$                     | 0,9 <sup>ns</sup>   | 0,194  |  |
| $C_4$          | 17,8 <sup>*</sup>  | 0,003 | $C_4$                     | 0,4 <sup>ns</sup>   | 0,724  |  |
| $C_5$          | 26,5 <sup>*</sup>  | 0,001 | C <sub>5</sub>            | 0,6 <sup>ns</sup>   | 0,665  |  |
| $C_6$          | 19,6 <sup>*</sup>  | 0,007 | $C_6$                     | -0,03 <sup>ns</sup> | 0,982  |  |
| $C_7$          | 7,4 <sup>ns</sup>  | 0,287 | C <sub>7</sub>            | 0,6 <sup>ns</sup>   | 0,648  |  |
| Altı           | ura de Plantas     |       | Diâmetro de Colmos        |                     |        |  |
| Contrastes     | Estimativa do      | Pr>Fc | Contrastes                | Estimativa do       | Pr>Fc  |  |
| Contrastes     | contraste          | FIZEC |                           | contraste           | 1 1/10 |  |
| $C_1$          | -1,6 <sup>ns</sup> | 0,055 | C <sub>1</sub>            | -0,4 <sup>ns</sup>  | 0,578  |  |
| $C_2$          | 2,1*               | 0,000 | $C_2$                     | 0,7 <sup>ns</sup>   | 0,209  |  |
| $C_3$          | -2,4 <sup>*</sup>  | 0,006 | $C_3$                     | -0,7 <sup>ns</sup>  | 0,394  |  |
| $C_4$          | -0,2 <sup>ns</sup> | 0,793 | $C_4$                     | -0,01 <sup>ns</sup> | 0,989  |  |
| $C_5$          | -0,3 <sup>ns</sup> | 0,770 | C <sub>5</sub>            | 0,3 <sup>ns</sup>   | 0,757  |  |
| $C_6$          | 0,2 <sup>ns</sup>  | 0,861 | $C_6$                     | -0,3 <sup>ns</sup>  | 0,781  |  |
| C <sub>7</sub> | -0,6 <sup>ns</sup> | 0,599 | C <sub>7</sub>            | -0,07 <sup>ns</sup> | 0,949  |  |

Significativo a 5% e ns não significativo a 5%.