CARACTERIZAÇÃO COMPARATIVA DO CONTROLE RESIDUAL DE HERBICIDAS UTILIZADOS EM CANA-DE-AÇÚCAR – SIMULAÇÃO DE PERÍODO SECO COM INFESTAÇÃO DE *Brachiaria decumbens*.

COLEVATE, A.F.K. (NAPD/UEM, Maringá/PR - afcolevate@hotmail.com), OLIVEIRA JR., R.S. (NAPD/UEM, Maringá/PR - rsojunior@uem.br), CONSTANTIN, J. (NAPD/UEM, Maringá/PR - constantin@teracom.com.br), FRANCHINI, L.H.M (NAPD/UEM, Maringá/PR - lhfranchini@gmail.com), TAKANO, H.K. (NAPD/UEM, Maringá/PR - hudsontakano@gmail.com), CONTIERO, R.L. (NAPD/UEM, Maringá/PR - rcontiero@uem.br)

RESUMO: O presente trabalho objetivou estudar o efeito residual de vários herbicidas recomendados para a cultura da cana-de-açúcar aplicados em condições de solo seco, em dois solos de texturas contrastantes, visando ao controle de diferentes fluxos de semeadura de *Brachiaria decumbens*. Foram realizados experimentos em solo de textura franco-argilo-arenosa e textura argilosa, aplicando-se, para cada textura de solo, duas doses dos herbicidas avaliados, representando 100% e 50% da dose recomendada de cada um deles. Foi avaliada a porcentagem de controle visual a cada 30 dias. Observou-se que no solo de textura argilosa houve maior número de herbicidas com efeito residual na dose recomendada em relação ao solo de textura franco-argilo-arenosa. Os tratamentos que apresentaram melhores níveis de controle residual para novos fluxos de *B. decumbens* foram diclosulam e sulfentrazone no solo de textura argilosa e dicosulam no solo de textura franco-argilo-arenosa.

Palavras-chave: Ranqueamento, controle residual, período de seca, pré-emergência.

INTRODUÇÃO

A presença de plantas daninhas pode interferir no processo produtivo, competindo pelos recursos do meio, hospedando pragas e doenças ou interferindo nas práticas culturais e na colheita (Pitelli, 1985). Os recursos despendidos no controle das plantas daninhas correspondem, em média, a 8% do custo total de produção da cana-planta e de 7 a 14% da cana-soca (FNP, 2006). Para o controle destas invasoras em áreas de cana-de-açúcar o método químico é a prática mais difundida em todo País (Freitas et al., 2004).

O controle químico de plantas daninhas é mais eficaz quando realizado durante a estação chuvosa, pois a água disponível no solo e o intenso desenvolvimento das plantas daninhas favorecem a absorção dos herbicidas. No entanto, como nas regiões Sudeste e Centro-Oeste do Brasil parte da colheita de cana-de-açúcar inicia-se nos meses de abril/maio, estendendo-se até novembro/dezembro do ano agrícola, os produtores têm

dificuldade em concentrar as aplicações de herbicidas somente na estação chuvosa, o que os leva a aplicá-los também no período de estiagem, a fim de que persistam no solo até o início da estação chuvosa (Azania et al., 2009).

O presente trabalho teve por objetivo estudar o efeito de diferentes herbicidas com atividade residual no solo, simulando condições de seca, em solos de texturas contrastantes e utilizando como espécie bioindicadora a *Brachiaria decumbens*.

MATERIAL E MÉTODOS

O experimento foram conduzidos na casa-de-vegetação em Maringá-PR (CTI/UEM), entre 28/01/2013 a 01/07/2013. Os tratamentos e suas respectivas doses encontram-se na Tabela 1.

Tabela 1. Tratamentos herbicidas e suas respectivas doses utilizadas nos experimentos de época seca. Maringá-PR/2013.

Tratamentos	Doses (g i.a. ha ⁻¹)									
Tratamentos	50%	6	100%							
	Arenoso	Argiloso	Arenoso	Argiloso						
1. Amicarbazone	525	700	1050	1400						
2. Clomazone	450	550	900	1100						
3. [Diuron+hexazinone]	468+132	702 +198	936+264	1404 +396						
4. [Diuron+hexazinone+	[450,400,40.0]	[693+196	[905+255	[1387+391+						
sulfometurom-metílico]	[452+128+10,8]	+16,6]	+21,7]	33,3]						
5. Flumioxazin	63	88	125	175						
6. Hexazinone	150	250	300	500						
7. Imazapic	67	81	133	161						
8. Diclosulam	63	84	126	168						
Sulfentrazone	300	400	600	800						
10 . Tebuthiuron	500	600	1000	1200						
11. Isoxaflutole	75	131	150	263						
12. Testemunha	-	-	-	-						

Foram implementados dois ensaios, um em solo de textura franco-argilo-arenosa, e outro em solo argiloso. Para cada tipo de solo foram aplicadas a dose recomendada e 50% da dose recomendada de cada herbicida. As unidades experimentais foram compostas por vasos de 3 dm³, arranjadas em delineamento inteiramente casualizado com três repetições. Características do solos: solo de textura argilosa: pH em água de 5,50; Carbono 24,10 g dm³; 68% de argila e 10% de areia; solo de textura franco-argilo-arenosa: pH em água de 5,50; Carbono 16,00 g dm³; 27% de argila e 66% de areia.

Foram semeadas 100 sementes de *B. decumbens* por vaso e em seguida procedeu-se à aplicação dos herbicidas, com a utilização de um pulverizador costal de pressão constante à base de CO₂. Os experimentos foram mantidos sem irrigação até 60 dias após a aplicação dos tratamentos, simulando a época seca. Após este período sem irrigação, esses

experimentos foram submetidos à irrigação diária, mantendo-os em uma umidade adequada para o desenvolvimento das plantas. Foram realizadas duas ressemeaduras durante a condução de cada experimento. A primeira foi realizada 30 dias após o início da irrigação (30 DAI) e a segunda foi realizada 30 dias após a primeira ressemeadura (30 DAR1). As avaliações realizadas foram: porcentagem de controle aos 30 dias após a irrigação (30 DAI), aos 30 dias após a primeira ressemeadura (30 DAR1) e aos 30 dias após a segunda ressemeadura (30 DAR2) usando uma escala de 0 a 100% que representa a morte das plantas.

Os dados foram submetidos à análise de variância pelo teste F, e quando se verificou efeito positivo para alguma variável-resposta, as médias foram comparadas pelo teste de Scott-Knott ao nível de 5% de probabilidade.

RESULTADOS E DISCUSSÃO

Com relação à eficácia dos tratamentos na época seca, no solo de textura argilosa, em pré-emergência, todos os herbicidas proporcionaram excelentes níveis de controle de *B. decumbens* aos 30 DAI (Tabela 2), quando aplicada a dose recomendada dos herbicidas.

Tabela 2. Controle residual de *Brachiaria decumbens* exercido por herbicidas utilizados em cana-de-açúcar na época seca em solo de <u>textura argilosa</u>. Maringá-PR/2013.

	% Controle											
Tratamentos	90 DAA 30 DAI 50% 100%						DAA		150 DAA 30 DAR2			
					30 DAR1 50% 100%				50%		100%	
1. Amicarbazone	100,00	aA	100,00	aA	0,00	dB	16,66	еA	0,00	eА	0,00	eA
2. Clomazone	100,00	аА	100,00	aA	0,00	dB	46,66	cA	0,00	еВ	40,00	cA
3. [Diuron+hexazinone]	100,00	аА	100,00	aA	0,00	dA	0,00	fA	0,00	eА	0,00	eА
4. [Diuron+hexazinone+ sulfometurom-metilico]	83,33	bB	100,00	аА	20,00	сВ	33,33	dA	20,00	сВ	36,66	cA
5. Flumioxazin	100,00	аА	100,00	aA	15,00	сВ	30,00	dA	0,00	еВ	10,00	dA
6. Hexazinone	20,00	dB	86,66	aA	0,00	dA	0,00	fA	0,00	eA	0,00	eА
7. Imazapic	88,33	bA	93,33	aA	20,00	сВ	58,33	bA	10,00	dB	46,66	cA
8. Diclosulam	87,66	bA	100,0	aA	33,33	bB	70,00	аА	36,66	аВ	70,00	аА
9. Sulfentrazone	76,66	сВ	100,0	aA	43,33	аВ	68,33	aA	26,66	bB	66,66	aA
10. Tebuthiuron	63,33	сВ	100,0	aA	0,00	dA	6,66	fA	0,00	eВ	13,33	dA
11. Isoxaflutole	88,33	bA	100,0	aA	20,00	сВ	65,00	aA	15,00	сВ	58,33	bA
12. Testemunha	0,00	eА	0,00	bA	0,00	dA	0,00	fA	0,00	eА	0,00	eА
CV%	10,70				19,87				28,97			

^{*}As médias seguidas pela mesma letra maiúsculas nas linhas e minúsculas nas colunas não se diferenciam entre si pelo teste de Scott-Knott a 5%.

Para os tratamentos com amicarbazone, clomazone, [diuron+hexazinone]), flumioxazin, imazapic e diclosulam, esses níveis excelente se mantiveram mesmo quando

aplicada 50% da dose recomendada, ou seja, não houve diferença, nesta data, entre as doses de 100% e 50%. Considerando apenas as comparações entre herbicidas quando aplicadas apenas 50% da dose recomendada de cada herbicida, amicarbazone, clomazone, [diuron+hexazinone] e flumioxazin foram os herbicidas que se colocaram no grupo de maior eficiência, seguindo por um segundo grupo composto por [diuron+hexazinone+sulfometurom-metílico], imazapic, diclosulam e isoxaflutole.

Após a primeira ressemeadura de *B. decumbens*, simulando uma reinfestação, pode ser observado que diclosulam, sulfentrazone e isoxaflutole mantiveram-se no grupo de melhor controle residual (120 DAA) quando aplicados com 100% da dose recomendada. No entanto, avaliando os resultados apresentados para aplicações de apenas 50% da dose recomendada, observa-se que apenas diclosulam e sulfentrazone continuavam a constituir o grupo de herbicidas com mais alto controle.

Quando são avaliados os resultados obtidos após a segunda ressemeadura de *B. decumbens*, aos 150 DAA, observa-se que os tratamentos com maior nível de controle residual continuam a ser os tratamentos com diclosulam e sulfentrazone, independente se observados os valores de controle com 50 ou 100% da dose recomendada visando ao controle residual em solo de textura argilosa (Tabela 2).

Concluiu-se que para o solo de textura arenosa os herbicidas que apresentaram maior atividade residual no controle de novos fluxos de *B. decumbens* oriundos de sementes foram diclosulam e sulfentrazone.

Para o solo de textura franco-argilo-arenosa (Tabela 3), com a utilização de 100% da dose recomendada dos herbicidas foi constatado que os tratamentos com [diuron+hexazinone+sulfometurom-metílico], flumioxazin e diclosulam foram agrupados entre os herbicidas que apresentaram os mais altos níveis de controle de plantas de *B. decumbens* provenientes de sementes. No caso de doses de 50%, os melhores resultados foram obtidos nesta data com os herbicidas flumioxazin, imazapic e diclosulam.

Aos 30 dias após primeira ressemeadura (30 DAR1) ficou evidente que os tratamentos 7 (imazapic), 8 (diclosulam) e 9 (sulfentrazone) apresentaram melhor controle residual, que se manteve para o tratamento 8 (diclosulam) mesmo com 50% da dose recomendada.

Aos 30 dias após a segunda ressemeadura (30 DAR2), os tratamentos com imazapic, diclosulam e sulfentrazone continuavam apresentando os maiores níveis de controle residual para *B. decumbens*, entretando o que apresentou melhor residual quando aplicada 50% da dose foi apenas o tratamento com diclosulam. Portanto foi possível observar que para o solo de textura franco-argilo-arenosa o tratamento que apresentou melhor nível de controle residual foi o tratamento com diclosulam.

Tabela 3. Controle residual de *Brachiaria decumbens* exercido por herbicidas utilizados em cana-de-çúcar na época seca em solo de <u>textura franco-argilo-arenosa</u>. Maringá-PR/2013.

						% Co	ntrole						
Tratamentos	90DAA 30DAI					120DAA 30DAR1				150DAA 30DAR2			
	50%	50% 100%			50%	1009	100%		50%		100%		
1. Amicarbazone	0,00	dA	0,00	dA	0,00	dA	0,00	eА	0,00	Ca	0,00	cA	
2. Clomazone	13,33	сВ	81,66	bA	30,00	bA	26,66	cA	10,00	сВ	28,33	bA	
3. [Diuron+hexazinone]	0,00	dB	48,33	cA	0,00	dA	0,00	eА	0,00	сВ	25,00	bA	
4. [Diuron+hexazinone+ sulfometurom-metílico]	76,66	bB	100,00	аА	16,66	cA	18,33	dA	0,00	Ca	0,00	cA	
5. Flumioxazin	100,00	aA	100,00	аА	0,00	dB	36,66	bA	0,00	Ca	0,00	cA	
6. Hexazinone	23,33	сВ	46,66	cA	0,00	dA	0,00	eА	0,00	Ca	0,00	cA	
7. Imazapic	92,66	аА	45,00	сВ	33,33	bB	66,66	аА	40,00	BB	66,66	аА	
8. Diclosulam	89,33	аА	100,00	аА	51,66	аВ	71,66	аА	53,33	аВ	73,33	аА	
9. Sulfentrazone	16,66	cA	0,00	dB	0,00	dB	69,33	аА	0,00	сВ	65,00	аА	
10. Tebuthiuron	10,00	сВ	50,00	cA	0,00	dA	0,00	eА	30,00	ВА	26,66	bA	
11. Isoxaflutole	11,66	сВ	73,33	bA	0,00	dB	40,00	bA	0,00	Ca	0,00	cA	
12. Testemunha	0,00	dA	0,00	dA	0,00	dA	0,00	eА	0,00	Ca	0,00	cA	
CV%	16,23					22,37				36,41			

^{*}As médias seguidas pela mesma letra maiúsculas nas linhas e minúsculas nas colunas não se diferenciam entre si pelo teste de Scott-Knott a 5%.

CONCLUSÕES

Nas condições em que foi realizado este trabalho, pode-se concluir que no solo de textura argilosa observou-se maior número de herbicidas com efeito residual na avaliação de 30 dias após o segundo replantio na dose recomendada em relação ao solo de textura franco-argilo-arenosa. Os tratamentos que apresentaram melhores níveis de controle residual para novos fluxos de *B. decumbens* foram diclosulam e sulfentrazone no solo de textura argilosa e dicosulam no solo de textura franco-argilo-arenosa.

REFERÊNCIAS BIBLIOGRÁFICAS

- AZANIA, C.A.M. et al. Manejo químico de Convolvulaceae e Euphorbiaceae em cana-de-açúcar em período de estiagem. **Planta Daninha**, v.27, n.4, p.841-848, 2009.
- FREITAS, S.P. et al. Controle químico de *Rottboelia exaltata* em cana-de-açúcar. **Planta Daninha**, v.22, n.3, p.461-466, 2004.
- FNP CONSULTORIA & COMÉRCIO. **Agrianual 2006**: Anuário da agricultura brasileira. São Paulo: 2006. p.227-247.
- PITELLI, R. A. Inteferência de plantas daninhas em culturas agrícolas. **Inf. Agropec.**, v.11, n.129, p.16-27, 1985.